Spectral Representation of Three-Dimensional Global Data by Expansion in Normal Mode Functions

1981 ◽  
Vol 109 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Akira Kasahara ◽  
Kamal Puri
2013 ◽  
Vol 21 (01) ◽  
pp. 1250025 ◽  
Author(s):  
A. TADEU ◽  
E. G. A. COSTA ◽  
J. ANTÓNIO ◽  
P. AMADO-MENDES

2.5D and 3D Green's functions are implemented to simulate wave propagation in the vicinity of two-dimensional wedges. All Green's functions are defined by the image-source technique, which does not account directly for the acoustic penetration of the wedge surfaces. The performance of these Green's functions is compared with solutions based on a normal mode model, which are found not to converge easily for receivers whose distance to the apex is similar to the distance from the source to the apex. The applicability of the image source Green's functions is then demonstrated by means of computational examples for three-dimensional wave propagation. For this purpose, a boundary element formulation in the frequency domain is developed to simulate the wave field produced by a 3D point pressure source inside a two-dimensional fluid channel. The propagating domain may couple different dipping wedges and flat horizontal layers. The full discretization of the boundary surfaces of the channel is avoided since 2.5D Green's functions are used. The BEM is used to couple the different subdomains, discretizing only the vertical interfaces between them.


2014 ◽  
Vol 758 ◽  
Author(s):  
A. K. Kaminski ◽  
C. P. Caulfield ◽  
J. R. Taylor

AbstractWe investigate numerically transient linear growth of three-dimensional perturbations in a stratified shear layer to determine which perturbations optimize the growth of the total kinetic and potential energy over a range of finite target time intervals. The stratified shear layer has an initial parallel hyperbolic tangent velocity distribution with Reynolds number $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}=U_0 h/\nu =1000$ and Prandtl number $\nu /\kappa =1$, where $\nu $ is the kinematic viscosity of the fluid and $\kappa $ is the diffusivity of the density. The initial stable buoyancy distribution has constant buoyancy frequency $N_0$, and we consider a range of flows with different bulk Richardson number ${\mathit{Ri}}_b=N_0^2h^2/U_0^2$, which also corresponds to the minimum gradient Richardson number ${\mathit{Ri}}_g(z)=N_0^2/(\mathrm{d}U/\mathrm{d} z)^2$ at the midpoint of the shear layer. For short target times, the optimal perturbations are inherently three-dimensional, while for sufficiently long target times and small ${\mathit{Ri}}_b$ the optimal perturbations are closely related to the normal-mode ‘Kelvin–Helmholtz’ (KH) instability, consistent with analogous calculations in an unstratified mixing layer recently reported by Arratia et al. (J. Fluid Mech., vol. 717, 2013, pp. 90–133). However, we demonstrate that non-trivial transient growth occurs even when the Richardson number is sufficiently high to stabilize all normal-mode instabilities, with the optimal perturbation exciting internal waves at some distance from the midpoint of the shear layer.


1995 ◽  
Vol 62 (1) ◽  
pp. 141-149 ◽  
Author(s):  
C. W. Cai ◽  
Y. K. Cheung ◽  
H. C. Chan

The normal mode localization in nearly periodic systems with one-degree-of-freedom subsystems and a single subsystem departing from the regularity in one, two, and three dimensions has been studied. The closed-frequency equations may be derived by using the U-transformation technique. It is shown that in one- and two-dimensional problems any amount of simple disorder (for stiffness or mass), however small, is sufficient to localize one mode and in three-dimensional systems, a finite threshold of disorder is needed in order to localize one mode. These conclusions are in agreement with those predicted by Hodges.


2020 ◽  
Vol 28 (04) ◽  
pp. 2050004
Author(s):  
Buchao An ◽  
Chao Zhang ◽  
Dejiang Shang ◽  
Yan Xiao ◽  
Imran Ullah Khan

A combined Finite Element Method with Normal Mode (FEM-NM) is proposed for calculation of the acoustic field radiated by a three-dimensional structural source in shallow water. The FEM is used to calculate the near range acoustic field, then the modes expansion at the vertical and azimuthal direction is performed at a certain coupling range. Hence, the true three-dimensional acoustic field at any range is obtained rapidly by the NM theory. The numerical examples show the efficiency and accuracy of this method. The coupling range and the truncation of the vertical modes hardly affect the far field results.


Sign in / Sign up

Export Citation Format

Share Document